
19 Attacks
For Breaking (All) Software Applications

EXCERPTS FROM TOP-SELLING BOOK AND METHODOLOGY,
“HOW TO BREAK SOFTWARE SECURITY”

OVERVIEW

ABOUT SECURITY INNOVATION

ABOUT OUR METHODOLOGY

HTBSS ATTACKS OVERVIEW

I. ATTACKING SOFTWARE DEPENDENCIES

II. BREAKING SECURITY THROUGH THE USER INTERFACE

III. ATTACKING DESIGN

IV. ATTACKING IMPLEMENTATION

ATTACKING SOFTWARE DEPENDENCIES

ATTACK 1: BLOCK ACCESS TO LIBRARIES.

ATTACK 2: MANIPULATE THE APPLICATION’S REGISTRY VALUES

ATTACK 3: FORCE THE APPLICATION TO USE CORRUPT FILES

ATTACK 4: MANIPULATE AND REPLACE FILES THAT THE APPLICATION CREATES,

READS FROM, WRITES TO, OR EXECUTES

ATTACK 5: FORCE THE APPLICATION TO OPERATE IN LOW MEMORY, DISK-SPACE

AND NETWORK-AVAILABILITY CONDITIONS

ATTACKING THE USER INTERFACE

ATTACK 6: OVERFLOW INPUT BUFFERS

ATTACK 7: EXAMINE ALL COMMON SWITCHES AND OPTIONS

ATTACK 8: EXPLORE ESCAPE CHARACTERS, CHARACTER SETS, AND COMMANDS

Table of Contents

4
4
5
6
6
6
6
6
7
7
7
7
8

8

9
9
9
9

ATTACKING DESIGN

ATTACK 9: TRY COMMON DEFAULT AND TEST ACCOUNT NAMES AND PASSWORDS ...

ATTACK 10: USE HOLODECK TO EXPOSE UNPROTECTED TEST APIS

ATTACK 11: CONNECT TO ALL PORTS

ATTACK 12: FAKE THE SOURCE OF DATA

ATTACK 13: CREATE LOOP CONDITIONS IN ANY APPLICATION THAT INTERPRETS

SCRIPT, CODE, OR OTHER USER-SUPPLIED LOGIC

ATTACK 14: USE ALTERNATE ROUTES TO ACCOMPLISH THE SAME TASK

ATTACK 15: FORCE THE SYSTEM TO RESET VALUES

ATTACKING IMPLEMENTATION

ATTACK 16: GET BETWEEN TIME OF CHECK AND TIME OF USE

ATTACK 17: CREATE FILES WITH SAME NAME AS FILES PROTECTED WITH A HIGHER

CLASSIFICATION

ATTACK 18: FORCE ALL ERROR MESSAGES

ATTACK 19: USE HOLODECK TO LOOK FOR TEMPORARY FILES AND SCREEN THEIR

CONTENTS FOR SENSITIVE INFORMATION

Table of Contents

10
10
11
11
11

12
12
13
13
13

14
14

<?>

10

Security Innovation Inc. 4

Security Innovation is the leading independent provider of risk analysis,
risk mitigation and education services to mid-size and Fortune 500
companies. For over a decade the company has provided products,

training, and software assessment services to help organizations build
and deploy more secure software systems and harden their data
communications schemes. Global technology vendors and enterprise IT
organizations such as IBM, Sony, Microsoft, ING, SAP, and GE rely on our
expertise to understand the security risks in their software systems and
facilitate the software and process change necessary to mitigate them.

Security Innovation built upon its core competencies in application
security with the acquisition of NTRU CryptoSystems in 2009, a company
that developed proprietary, standardized algorithms. This resulted in the
strongest and fastest public key cryptography available - and the means to
overcome historical implementation and speed barriers that have plagued
the data encryption industry. With these core strengths intact, Security
Innovation is in a position to help organizations protect their data at two
critical points: while applications are accessing it and during transmission.
The company’s flagship products include TeamProfessor, the industry’s
largest library of software security eLearning titles, and TeamMentor, the
industry’s first secure development process product. The company has
developed unparalleled expertise in the most dominant and demanding
computing platforms & development environments. This practical
experience gained through deep assessment of the world’s most robust
software applications combined with research on pressing security issues
continues to position the company at the apex of the application security
market.

Overview
About Security Innovation

Security Innovation Inc. 5

Security Innovation’s testing techniques are not “black magic” like some
other security service providers - we publish our security testing
methodology and refine it with every project. Our 19 attacks, described

in an abridged format in this whitepaper, are practical, effective and based
on years of research into software security defects. These attacks are
effective on any kind of application, platform and development language
and are used by thousands of developers and testers world-wide. They are
also the cornerstone of Security Innovation’s methodology that subsumes
all other security standards, including the OWASP top ten, and we pass
them along to you for use in your security testing efforts.

About our Methodology

Security Innovation Inc. 6

Following is an overview of the 19 attacks; each is described in further
detail later in the whitepaper, and each is described in extensive detail
in our top-selling book How to Break Software Security

I. ATTACKING SOFTWARE DEPENDENCIES
Attack 1: Block access to libraries
Attack 2: Manipulate the application’s registry values.
Attack 3: Force the application to use corrupt files
Attack 4: Manipulate and replace files that the application creates, reads,
writes & executes
Attack 5: Force application to operate in low memory, disk-space and
network-availability conditions

II. BREAKING SECURITY THROUGH THE USER INTERFACE
Attack 6: Overflow input buffers
Attack 7: Examine all common switches and options
Attack 8: Explore escape characters, character sets, and commands

III. ATTACKING DESIGN
Attack 9: Try common default and test account names and passwords
Attack 10: Use Holodeck to expose unprotected test APIs
Attack 11: Connect to all ports
Attack 12: Fake the source of data
Attack 13: Create loop conditions that interpret script, code, or other user-
supplied logic
Attack 14: Use alternate routes to accomplish the same task
Attack 15: Force the system to reset values

IV. ATTACKING IMPLEMENTATION
Attack 16: Get between time of check and time of use
Attack 17: Create files with the same name as files protected with a higher
classification
Attack 18: Force all error messages
Attack 19: Use Holodeck to look for temporary files and screen their
contents for sensitive information

HTBSS Attacks Overview

Security Innovation Inc. 7

Attacking Software Dependencies

Applications rely heavily on their environment in order to work properly. They depend
on the OS to provide resources like memory and disk space; they rely on the file
system to read and write data; they use structures such as the Windows Registry to

store and retrieve information; the list goes on and on. These resources all provide input
to the software— not as overtly as the human user does—but input nonetheless. Like any
input, if the software receives a value outside of its expected range, it can fail. Inducing
failure scenarios can allow us to watch an application in its unintended environment and
expose critical vulnerabilities.

ATTACK 1: BLOCK ACCESS TO LIBRARIES
Software depends on libraries from the operating system, third-party vendors, and
components bundled with the application. The type of libraries to target depends on
your application. Sometimes DLLs have obscure names that give little clue to what they’re
used for. Others can give you hints to what services they perform for the application. This
attack is designed to ensure that the application under test does not behave insecurely
if software libraries fail to load. When environmental failures occur, application error
handlers get executed. However, sometimes these situations are not considered during
application design, and the result is the dreaded unhandled exception. Even if there
is code to handle these types of errors, this code is a fertile breeding ground for bugs,
because it is likely that it was subjected to far less testing than the rest of the application.

ATTACK 2: MANIPULATE THE APPLICATION’S REGISTRY VALUES
The Windows registry contains information crucial to the normal operation of the operating
system and installed applications. For the OS, the registry keeps track of information
like key file locations, directory structure, execution paths, and library version numbers.
Applications rely on this and other information stored in the registry to work properly.
However, not all information stored in the registry is secured from either users or other
installed applications. This attack tests that applications do not store sensitive information
in the registry or trust the registry to always behave predictably.

ATTACK 3: FORCE THE APPLICATION TO USE CORRUPT FILES
Software can only do so much before it needs to store or read persistent data. Data is the
fuel that drives an application, so sooner or later all applications will have to interact with
the file system. Corrupt files or file names are like putting sugar in your car’s gas tank; if
you don’t catch it before you start the car, the damage may be unavoidable. This attack
determines if applications can handle bad data gracefully, without exposing sensitive
information or allowing insecure behavior. A large application may read from and write
to hundreds of files in the process of carrying out its prescribed tasks. Every file that an
application reads provides input; any of these files can be a potential point of failure and
thus a good starting point for an attack. Particularly interesting files to check are those
that are used exclusively by the application and not intended for the user to read or
alter; they are files where it is least likely that appropriate checks on data integrity will be
implemented.

Security Innovation Inc. 8

Attacking Software Dependencies

ATTACK 4: MANIPULATE AND REPLACE FILES THAT THE APPLICATION CREATES,
READS FROM, WRITES TO, OR EXECUTES
Similar to Attack 3, this attack also involves file-system dependencies. In previous attacks,
we were trying to get the application to process corrupt data. In this one, we manipulate
data, executables, or libraries in ways that force the application to behave insecurely. This
attack can be applied any time an application reads or writes to the file system, launches
another executable, or accesses functionality from a library. The goal of this attack is to test
whether the application allows us to do something we shouldn’t be able to do.

ATTACK 5: FORCE THE APPLICATION TO OPERATE IN LOW MEMORY, DISK-SPACE
AND NETWORK-AVAILABILITY CONDITIONS
An application is a set of instructions for computer hardware to execute. First, the
computer will load the application into memory and then give the application additional
memory in which to store and manipulate its internal data. Memory is only temporary,
though; to really be useful, an application needs to store persistent data. That’s where
the file system comes in, and with it, the need for disk space. Without sufficient memory
disk space, most applications will not be able to perform their intended function. The
objective of this attack is to deprive the application of any of these resources so testers
can understand how robust and secure their application is under stress. The decision
regarding which failure scenarios to try (and when) can only be determined on a case-by-
case basis. A general rule of thumb is to block a resource when an application seems most
in need of it.

Security Innovation Inc. 9

Attacking the User Interface

The user interface is usually the most comfortable bug hunting ground for security
testing. It’s the way we are accustomed to interacting with our applications, and the
way application developers expect us to. The attacks discussed here focus on inputs

applied to software through its user interface. Most security bugs result from additional,
unintended, and undocumented user behavior. From the UI, this amounts to handling
unexpected input from the user in a way that compromises the application, the system
it runs on, or its data. The result could be privilege escalation (a normal user acquiring
administrative rights) or allowing secret information to be viewed by an unauthorized user.

ATTACK 6: OVERFLOW INPUT BUFFERS
Buffer overflows are by far the most notorious security problems in software. They occur
when applications fail to properly constrain input length. Some buffer overflows don’t
present much of a security threat. Others, however, can allow hackers to take control of
a system by sending a well-crafted string to the application. This second type is referred
to by the industry as “exploitable,” because parts of the string may get executed if they
are interpreted as code. What sometimes happens is that a fixed amount of memory is
allocated to hold user input. If developers then fail to constrain the length of the input
strings entered by the user, data can overwrite application instructions, allowing the user
to execute arbitrary code and gain access to the machine.

ATTACK 7: EXAMINE ALL COMMON SWITCHES AND OPTIONS
Some applications are tolerant to varying user input under a default configuration.
Most default configurations are chosen by the application developers, and most tests
are executed under these conditions, especially if options are obscure or are entered
using command-line switches. When these configurations are changed, the software is
often forced to use code paths that may be severely under-tested and thus results can
be unpredictable. Obviously, to test a wide range of inputs under every possible set of
configurations is impossible for large applications; instead, this attack focuses on some
of the more obscure configurations, such as those in which switches are set through the
command line at startup.

ATTACK 8: EXPLORE ESCAPE CHARACTERS, CHARACTER SETS, AND COMMANDS
Some applications may treat certain characters as equivalent when they are part of a
string. For most purposes, a string with the letter a in a certain position is not likely to be
processed any differently from a similar string with the letter z in that same position. With
this in mind, the question “Which characters or combinations of characters are treated
differently?” naturally follows. This is the driving question behind this attack. By forcing
the application to process special characters and commands, we can sometimes force it
to behave in ways its designers did not intend. Factors that affect which characters and
commands might be interpreted differently include the language the application was
written in, the libraries that user data is passed through, and specific words and strings
reserved by the underlying operating system.

Security Innovation Inc. 10

Attacking Design

It is very difficult to look at 300 pages of design documentation and determine
whether the finished product will be secure. It is no surprise then that some security
vulnerabilities creep in at the design phase. The problem is that subtle design decisions

can lead to component interaction and inherent flaws that create vulnerabilities in the
finished product. Attacks 6-8 help expose these design insecurities in software it will tackle
insecure defaults, test accounts, test instrumentation, open ports, and poor constraints on
user-supplied program logic.

ATTACK 9: TRY COMMON DEFAULT AND TEST ACCOUNT NAMES AND PASSWORDS
In applications that have restrictions on data and functionality, all users are not treated
equally. User actions are governed by their assigned level of access. In most instances,
users are identified and authenticated with user names and passwords. Many applications,
however, ship with some special user accounts built in; the most common examples
being the “Administrator” or “root” accounts. These accounts usually don’t present a
problem; they are typically well documented, and the user is prompted to change or
initialize the password upon installation. Problems arise, though, when undocumented,
invisible, or unconfigurable accounts ship with the product. We must understand when
user credentials are entered, checked and whether or not they get cached. This attack is
designed to weed out “hidden” accounts so that they can be dealt with before release.

ATTACK 10: USE HOLODECK TO EXPOSE UNPROTECTED TEST APIS
Complex, large-scale applications are often difficult to test effectively by relying on the APIs
intended for normal users alone. Sometimes there are multiple builds in a single week,
each of which has to go through a suite verification tests. To meet this demand, many
developers include hooks that are used by custom test harnesses. These hooks—and
corresponding test APIs—often bypass normal security checks done by the application
the sake of ease of use and efficiency. Developers add them for testers, intending to
remove them before the software is released. The problem is that these test APIs become
so integrated into the code and the testing process that when the time comes for the
software to be released, managers are reluctant to remove them for fear of “destabilizing”
the code, potentially causing a major delay in the ship date. It is thus critical to find these
dangerous programmatic interfaces and ensure that, if they were to be accessed in the
field by hackers, they could not be used to compromise application, its host system, or
user data. By watching the application with Holodeck while automated test suites are
running, we can identify dlls that are loaded and used, and then evaluate their impact on
application security. In this attack, we try to expose test APIs.

Security Innovation Inc. 11

Attacking Design

ATTACK 11: CONNECT TO ALL PORTS
A port is a method of organizing network traffic that is received or sent from a machine, so
that different types of data can be transmitted simultaneously. When a port is “open,” the
operating system is “listening” for data through that interface.

Applications commonly open ports to send data across the network. However, an open
port is not automatically a secure conduit for communication. Without proper measures
taken by application developers, an open port is a welcome mat for a hacker attempting to
gain unauthorized access to a system. This attack finds these “open doors.”

ATTACK 12: FAKE THE SOURCE OF DATA
Some data is trusted implicitly, based on its source; for example, applications tend to
accept values from sources like the OS with minimal scrutiny. Some sources should be
trusted (in fact they must be trusted) for the application to function—sources such as
configuration commands from an authenticated administrator. Problems arise when the
trust an application extends to a particular source is not commensurate with the checks it
makes to ensure that data is indeed from that source. This attack focuses on ensuring that
applications take the proper precautions to verify the source of data, and that even when
verified, the level of trust the application extends to that source is appropriate.

ATTACK 13: CREATE LOOP CONDITIONS IN ANY APPLICATION THAT INTERPRETS
SCRIPT, CODE, OR OTHER USER-SUPPLIED LOGIC
Some commands, when executed in isolation, are harmless. Imagine opening a Web
browser and navigating to a Website that launches another window. This action by itself
may be annoying, but it doesn’t represent a threat to the end user. Now imagine that new
window launching a third window, followed by another and another. Without some sanity
checks by the browser, the system would become deadlocked. This attack investigates
these repeated actions: taking commands that are relatively benign and executing them
over and over again to deny functionality to entitled users or processes.

Security Innovation Inc. 12

Attacking Design

ATTACK 14: USE ALTERNATE ROUTES TO ACCOMPLISH THE SAME TASK
How many ways can you open a Microsoft Word® file in Windows. You could:
• Type the path in the Run dialog box
• Double-click on the file’s icon in an Explorer window
• Type the path and file name in an Explorer window
• Type the path and file name in an Internet Explorer window
• Select it from the My Recent Documents tab on the Start menu
• Type the file name in the Open dialog box within Word
• Etc., etc., etc.
There are many ways in which to accomplish this task, but whichever method we choose,
we expect the same result: our document will be displayed and be ready to edit. Now
imagine trying to implement a security control on that document. To be effective, we must
anticipate every possible scenario and verify that each goes through our validation routine;
this can be a daunting task for even the most experienced developer. Cases get missed,
and the result is a route that circumvents security controls. This attack is designed to help
you think about the applications you test and explore all possible ways of accomplishing a
task, not just typical user scenarios.

ATTACK 15: FORCE THE SYSTEM TO RESET VALUES
This is one of our favorites, because you don’t really need to do anything; indeed, that’s
the whole point of the attack. Leave fields blank, click Finish instead of Next or just delete
values. These types of actions force the application to provide a value where you haven’t.
Establishing default values is a fairly intricate programming task. Developers have to make
sure that variables are initialized before a loop is entered or before a function call is www.
securityinnovation.com 10 made. If this isn’t done, then an internal variable might get used
without being initialized. The result is often catastrophic. Whenever a variable is used, it
must first be assigned a legitimate value. Good programming practice is to assign a value
to a variable as soon as it is declared in order to avoid these types of failures. In practice,
though, programmers often assume that the user will provide a legitimate value in the
course of the application’s execution before the variable is used. For security, the biggest
concern is that default values and configurations can leave the software in an unsafe
state. This attack is focused on forcing the application to use these default values and then
assessing the vulnerabilities that these values produce.

Security Innovation Inc. 13

Attacking Implementation

A perfect design can still be made vulnerable by imperfect implementation. For
example, the Kerberos authentication scheme is renowned as a well thought out and
secure authentication scheme, yet the MIT implementation has had many serious

security vulnerabilities in its implementation, most notably, buffer overruns. Indeed, we can
ensure that every aspect of the design is secure and still produce an insecure product. The
problem is that security is not communicated well down the design hierarchy. Developers
are usually given a list of requirements that emphasize which interfaces their component
should extend to the rest of the application and the form of data that their component will
receive. They are also given requirements for the computation to be performed on that
data. However, specific requirements are seldom given as to exactly how that computation
should be performed.

ATTACK 16: GET BETWEEN TIME OF CHECK AND TIME OF USE
Data is at risk whenever an attacker can separate the functions that check security around
a feature or a piece of data from the functions that actually access and use these features
or data. The ideal situation would be to ensure that every time sensitive operations are
performed, checks are made to guarantee that they will succeed securely. If too much time
elapses between the time the data is checked and the time it is used, then the possibility
of the attacker infiltrating such a transaction must be considered. It is the old “bait and
switch” con applied to computing: Bait the application with legitimate information, and then
switch that information with illegitimate data before it notices. This attack is designed to
exploit this time delay and penetrate the process between these two functions, with the
goal being to force the application to perform some unauthorized action.

ATTACK 17: CREATE FILES WITH SAME NAME AS FILES PROTECTED WITH A HIGHER
CLASSIFICATION
Some files enjoy special privileges based on their location. For example, take dynamic link
libraries (dlls). These libraries are used to perform certain tasks and are loaded by the
application either at startup or when needed. Depending on where these libraries are
located in the directory structure, a user with restricted privileges may not be allowed to
alter them or write to the directory that contains them. Attackers can take advantage of the
fact that these libraries are usually loaded by name, without any further checks to make
sure that they are indeed the desired files. This can be exploited by creating a file with the
same name and placing it in a directory the user does have access to that the application
may search first. A related issue is that some files are given special privileges based solely
on their names. This is a common phenomenon, especially with antivirus software that
operates using a complex mesh of filtering rules based on filenames and their extensions.
This attack will target both behaviors and is applicable any time an application makes
execution or privilege decisions based on filename.

Security Innovation Inc. 14

Attacking Implementation

ATTACK 18: FORCE ALL ERROR MESSAGES
Error messages are used to convey information to a user. Their purpose is to alert a user
to some improper or disallowed action that may have been attempted. Our goal in this
attack is to try to force the range of error messages that the application can display. Those
of you who read the original How to Break Software book may remember this attack. In
that book, our focus was to think through the possible illegal values that could be entered
into a field. By trying to cause error messages, you are actually covering the range of bad
input to the application ATTACKING IMPLEMENTATION www.securityinnovation.com 19
ATTACKS FOR BREAKING (ALL) SOFTWARE APPLICATIONS 12 and testing its robustness
to that data; an example would be trying to enter a negative value into a “number of
siblings” Web field. Obviously, this is an illegal value, but by trying to force the application
to display an error message indicating this, we are actually testing the application’s ability
to appropriately handle illegal input. The goal of this attack is to find a situation that is not
handled appropriately; that is, no error message is displayed, and the application attempts
to process the bad value.

ATTACK 19: USE HOLODECK TO LOOK FOR TEMPORARY FILES AND SCREEN THEIR
CONTENTS FOR SENSITIVE INFORMATION
Applications routinely write data to the file system, which can store both persistent
(permanent) data and also temporary data. Temporary files can be created to transfer
data between components or to hold data that may be either too large to hold in memory
or too inefficient to keep there. If this data (CD keys, encryption keys, passwords, or other
personal data) is sensitive, then the mechanism for storing this data and access points to
this data need to be investigated. Testers, especially security testers, must be aware of
when, where, and how the application accesses file-system data. To be effective, we must
identify which data should not be exposed to other potential users of the system. After
sensitive data has been identified, we must find creative ways to gain insecure access to
it. It is important to keep in mind that software lives in a multiuser, networked world, and
just because our software created a file and deleted it doesn’t mean that those operations
went unnoticed by prying third parties. Our primary observation tool for this attack is
Holodeck, which can monitor the application for file-writes and log these behaviors so
that we can sift through them. Holodeck can tell us the when, how and where of every file
access an application makes. It’s up to us to investigate what was written and whether this
data is supposed to be secret.

ABOUT SECURITY INNOVATION

Since 2002, organizations have relied on Security Innovation for our unique software
and application security expertise to help secure and protect sensitive data in the most
challenging environments – automobiles, desktops, web applications, mobile devices
and in the cloud. A best-in-class security training, assessment, and consulting provider,
Security Innovation has been recognized as a Leader in the Gartner Magic Quadrant
for Security Awareness Training for three years in a row. Security Innovation is privately
held and headquartered in Wilmington, MA USA. For more information, visit www.
securityinnovation.com or connect with us on LinkedIn or Twitter.

