
Metacash

Metacash V2
Smart Contract Audit

Document Name: Smart Contract Audit

Date: May 17, 2019

Customer Contact: Nour Haridy <nour@lamarkaz.com>

Author: Mick Ayzenberg

<mayzenberg@securityinnovation.com>

Ben Stewart <bstewart@securityinnovation.com>

Project Manager: Garrett Jaynes <gjaynes@securityinnovation.com>

BOSTON | SEATTLE | PUNE

187 Ballardvale St., Suite A195 ● Wilmington, MA 01887 ● Ph: +1.978.694.1008

getsecure@securityinnovation.com ● www.securityinnovation.com

Introduction

Security Innovation performed a smart contract audit of Metacash V2 on behalf of Metacash.

Security Innovation conducted this review from the following commit over the course of two

engineering weeks.

https://github.com/Lamarkaz/Metacash-

contracts/commit/9032fef98c662d4ff108c29c06df490b5d0027a9

This report summarizes the issues that were uncovered.

Metacash V2 is the second release of Metacash which is a gasless, non-custodial mobile DAI

wallet that allows you to send DAI or other ERC20 tokens and pay transaction fees in that

token instead of Ether. This is accomplished through an alternative wallet architecture

combining meta transactions, smart contract wallets, and the new CREATE2 opcode released

as part of Ethereum Constantinople upgrade.

The first version is fully-functional on the Ethereum mainnet and the client is available as an

Android application. The second release that was reviewed as part of this report, adds

functionality to the smart wallets including the ability to execute call, delegatecall, create, and

create2 operations directly from the wallet. Additionally, inline documentation saw a sizeable

update.

Testing focused on the entire suite of contracts composing Metacash V2 (Factory, Ownable,

Proxy, RelayRegistry, SmartWallet) and review was largely a manual effort with usage of a

handful of automated tools providing static or security analysis. Conversations were held with

the development team around functionality, applicable use-cases, and future direction.

Testing was time-boxed to two engineers, five days each.

Overall, there were few major security concerns identified in Metacash V2. There were a couple

of high severity issues identified that could lead to locked or stolen funds for a targeted user if

not remediated. In addition, numerous lower risk issues were identified and outlined in further

detail in the Problem Reports section. Also, a few minor observations were made that can

impact the overall security of the system.

It is recommended that the development team study these issues carefully and verify if any of

the findings have the potential to be more severe. The author(s) of this report retain no

responsibility for any unidentified vulnerabilities, known or unknown, in the target application.

Major observations are as follows:

A total of 10 security issues were identified:

PR1 - Fund Theft Through Signature Phishing

PR2 - Fund Theft Through Transaction Collisions

PR3 - Double Spend After Relayer Message Withholding

PR4 - Non-Compliant Tokens are Not Supported

PR5 - Failure to Validate Return Value of ecrecover

PR6 - Floating Pragma Version

PR7 - Functions Not Declared Payable

PR8 - Re-Entrancy Within execCall Function

Page 3

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

PR9 - User-Activated Self-Destruct Enables Replay Attacks

PR10 - Potential to Upgrade Away Fees

If the issues outlined in this report are not remediated, a malicious DApp or Relay may be

able to steal or lock funds of a targeted Metacash user.

Page 4

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Contract Description

Metacash is comprised of 5 individual contracts:

Factory

This contract is deployed once and is responsible for creating individual instances of Metacash

for end-users. It uses the create2 opcode so that the Metacash addresses are deterministic and

users can preload their wallet with funds before deployment.

External functions are either designated as manual or relayer-only. Manual functions are

initiated by the wallet owner, whereas relayer functions are executed by a select group of

addresses that submit signed messages from the owner. In exchange for submitting these

messages and paying the gas fee, these relayers collect a fee in a token designated by the

wallet owner.

Factory defines the following functions:

deployCreate2(address owner)

Internal function that deploys a Metacash instance for a user

deployWallet(uint fee, address token, uint8 v, bytes32 r, bytes32 s)

Relayers submit a signed message to deploy a wallet for a user

deployWallet(uint fee, address token, address to, uint value, uint8 v, bytes32 r,

bytes32 s)

Relayers submit a signed message to deploy wallet and make an initial token

payment

deployWallet()

Manual function for deploying a new wallet

deployWallet(address token, address to, uint value)

Manual function for deploying a wallet and making an initial payment

deployWalletExecCall(address contractAddress, bytes memory data, uint msgValue)

Manual function for deploying a wallet and making an initial call to a separate

contract

deployWalletExecCall(address contractAddress, bytes memory data, uint msgValue,

uint fee, address token, uint8 v, bytes32 r, bytes32 s)

Relayers submit a signed message to deploy wallet and make an initial call to a

separate contract

deployWalletExecDelegatecall(address contractAddress, bytes memory data)

Manual function for deploying a contract and making an initial delegatecall to a

Page 5

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Manual function for deploying a contract and making an initial delegatecall to a

separate contract

deployWalletExecDelegatecall(address contractAddress, bytes memory data, uint

fee, address token, uint8 v, bytes32 r, bytes32 s)

Relayers submit a signed message to deploy wallet and make an initial

delegatecall to a separate contract

deployWalletExecCreate(bytes memory data)

Manual function for deploying a wallet and creating a new contract with the

Metacash wallet as the creator

deployWalletExecCreate(bytes memory data, uint fee, address token, uint8 v,

bytes32 r, bytes32 s)

Relayers submit a signed message to deploy wallet and create a new contract with

the Metacash wallet as the creator

deployWalletExecCreate2(bytes memory data, uint salt)

Manual function for deploying a wallet and creating a new contract with the

create2 opcode and Metacash wallet as the creator

deployWalletExecCreate2(bytes memory data, uint salt, uint fee, address token,

uint8 v, bytes32 r, bytes32 s)

Relayers submit a signed message to deploy wallet and create a new contract with

the create2 opcode and Metacash wallet as the creator

getCreate2Address(address owner)

View function that returns a Metacash wallet address for a given user

getCreate2Address()

View function that returns a Metacash wallet address for msg.sender

canDeploy(address owner)

View function that returns whether a Metacash wallet for a user already has been

deployed

canDeploy()

View function that returns whether a Metacash wallet for msg.sender has already

has been deployed

recover(bytes32 messageHash, uint8 v, bytes32 r, bytes32 s)

Returns the signer of a message if the signature provided is correct, else it returns

address(0)

Page 6

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Proxy

The Proxy function is the contract that is deployed by the Factory that represents a wallet for

individual users. This contract is lightweight and uses delegatecall in its fallback function to

execute all functionality. It defines a mapping for state storage called store that encodes all

persistent data with abi.encode . The constructor stores the hard coded fallback address of the

SmartWallet library as well as the Factory's address.

fallback - SmartWallet implementation library

factory - Creator contract of this wallet

SmartWallet

This contract is deployed once and is to be used as a library by individual Proxies through

delegatecall. It contains all the functionality of the wallet and stores two additional fields in the

storage array:

owner - the user of the wallet

nonce - a incrementing uint used for replay protection

SmartWallet defines the following functions:

initiate(address owner)

Called only by Factory to initialize owner and nonce

initiate(address owner, address relay, uint fee, address token)

Initializes owner and nonce and pays a fee to a relayer

pay(address to, uint value, uint fee, address tokenContract, uint8 v, bytes32 r,

bytes32 s)

Relayer submitted message to transfer an ERC20 token

pay(address to, uint value, address tokenContract)

Manual transaction to transfer an ERC20 token

pay(address[] memory to, uint[] memory value, address[] memory tokenContract)

Manual transaction to batch transfer tokens

_execCall(address contractAddress, bytes memory data, uint256 msgValue)

Internal function to execute a call against a contract

_execDelegatecall(address contractAddress, bytes memory data)

Internal function to execute a delegatecall against an arbitrary contract

_execCreate(bytes memory data)

Page 7

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Internal function to create a new contract

_execCreate2(bytes memory data, uint256 salt)

Internal function to create a new contract with the create2 opcode

execCall(address contractAddress, bytes memory data, uint256 msgValue)

Manual function to execute a call against another contract from the wallet

execCall(address contractAddress, bytes memory data, uint256 msgValue, uint fee,

address tokenContract, uint8 v, bytes32 r, bytes32 s)

Relayer submitted message to execute a call against another contract from the

wallet

execDelegatecall(address contractAddress, bytes memory data)

Manual function to execute a delegatecall against another contract from the wallet

execDelegatecall(address contractAddress, bytes memory data, uint fee, address

tokenContract, uint8 v, bytes32 r, bytes32 s)

Relayer submitted message to execute a delegatecall against another contract

from the wallet

execCreate(bytes memory data)

Manual function that executes _execCreate(...)

execCreate(bytes memory data, uint fee, address tokenContract, uint8 v, bytes32 r,

bytes32 s)

Relayer submitted message that executes _execCreate(...)

execCreate2(bytes memory data, uint salt)

Manual function that executes _execCreate2(...)

execCreate2(bytes memory data, uint salt, uint fee, address tokenContract, uint8 v,

bytes32 r, bytes32 s)

Relayer submitted message that executes _execCreate2(...)

depositEth()

Payable empty function to receive Ether

withdrawEth()

Manual function that withdraws all available to Ether and transfers to the owner

upgrade(address implementation, uint fee, address feeContract, uint8 v, bytes32 r,

Page 8

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

bytes32 s)

Relayer submitted function that upgrades the SmartWallet implementation by

overwriting store["fallback"]

upgrade(address implementation)

Manual function that upgrades the SmartWallet implementation by overwriting

store["fallback"]

recover(bytes32 messageHash, uint8 v, bytes32 r, bytes32 s)

Identical to function in Factory

RelayRegistry

A simple registry containing a mapping of addresses to a boolean indicating whether they are a

relayer or not. Relayers can only be added or removed by the owner (an administrative account

belonging to Metacash).

It defines one function:

triggerRelay(address relay, bool value)

Adds or removes a given relayer from the registry and emits an event

Ownable

Based on the OpenZepplin contract, used by Relay Registry for authorization.

Page 9

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Attack Surface Analysis

This section describes the results of our attack surface analysis of Metacash. This attack

surface analysis was one of the factors used to guide the smart contract review process.

While investigating, the following assumptions were made:

Trusted relayers are added by Metacash for now, but this will eventually be replaced

with a decentralized organization

Relayer scripts, server code, and APIs are out of scope

Android and iOS wallet applications are out of scope

The following characteristics impact attack surface:

Users can deploy only one instance of a Metacash wallet from a given Factory

All wallet actions can be performed either manually or through a signed message sent to

a relayer

Individual wallet owners are the only role capable of authorizing a wallet upgrade

Users are expected to store a significant amount of value in their wallets

The following assets should be protected:

Wallet Assets: Ether or ERC20 tokens

Gas: Fuel used when executing an ethereum transaction

Metacash Message: A signed message authorizing a relayer to execute an action on the

user's wallet

Private Keys: Held within client wallet software, used to sign Ethereum transactions and

Metacash messages

Based on the attack surface and the assets, the following top risks were identified:

An anonymous party can steal or lock user funds in the wallet

A malicious DApp can steal or lock user funds in the wallet

A malicious relayer can steal or lock funds in a user's wallet

A malicious user can waste gas of a relayer

Page 10

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Problem Report Summary

A total of 10 issues were identified. This section describes, at a high level, each of the

problems discovered. See the Problem Summaries section for a table of each problem

discovered, its severity, description and consequences.

Problem reports are sorted by severity:

Critical: funds lost for all users from an untrusted attacker

High: funds lost for targeted users from an untrusted attacker

Medium: funds lost for targeted users from a trusted attacker

Low: unlikely edge case, defense in depth

Observation: best practices and gas optimizations

The problem report summaries are sorted by problem report ID. The format of the problem

report table is as follows:

The Problem Report ID

The component in which the issue was discovered.

The severity of the issue

The issue title

PR # Component Severity Title

1 Signature High Fund Theft Through Signature Phishing

2 Signature High Fund Theft Through Transaction Collisions

3 SmartWallet Medium Double Spend After Relayer Message Withholding

4 SmartWallet Medium Non-Compliant Tokens are Not Supported

5 SmartWallet Low Failure to Validate Return Value of ecrecover

6 Metacash.sol Low Floating Pragma Version

7 SmartWallet Low Functions Not Declared Payable

8 SmartWallet Low Re-entrancy Within execCall Function

9 Upgrades Low User-Activated Self-Destruct Enables Replay

Attacks

10 Upgrades Low Potential to Upgrade Away Fees

Page 11

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Problem Reports

Below are the details for each of the Problem Reports.

Problem Report 1 - Fund Theft Through Signature Phishing

Severity Target Line Number

High Signature Verification 382

Description

Transactions that are committed by relayers are constructed in the standard format produced

by the Web3 "eth_sign" method. For Metacash, transactions are a signed message where the

payload is of the following form:

"\x19Ethereum Signed Message:\n32"+keccak256(payload)

When asked to sign messages with eth_sign, client wallets such as Metamask do not use a

standard way of structuring the message payload for the user to verify. Because of this, there

is no default UX that user's can expect for verifying where the signed message is intended for.

An attacker can abuse this lack of UX clarity to construct a phishing attack that may move

funds from their Metacash wallet without their knowledge.

Consider the following attack:

A malicious DApp (cryptokitties2) has their users sign a message as part of the functionality,

such as a user registration or login.

CryptoKitties2 makes the user sign a malicious message with eth_sign that happens to be

identical to a request to their Metacash wallet to transfer out their funds. Since the eth_sign

method does not present any details to the structure of the payload, the message will appear

only as hex data to the user. Once the user signs the message, the malicious DApp then

replays that signed message to a MetaCash relayer, draining that user's funds.

Remediation

Consider Implementing EIP712 - EIP712 is a standard that defines a readable structure to

signed messages for enabling user verification of the message from the client UX. EIP712

messages are signed with a yet to be implemented "eth_signTypedData" RPC call as opposed

to eth_sign.

Part of this standard defines a Domain Separator that allows DApps to clearly verify the

intended recipient as part of the signed data.

EIP712 is still in draft format, however, popular wallets like Metamask are beginning to support

displaying messages in this format with the domain clearly presented to the user.

Page 12

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

It is recommended that despite EIP712 not being finalized, that Metacash implement signature

verification under this standard.

More information on EIP712 is available at the following URLs:

Page 13

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-712.md

https://weijiekoh.github.io/eip712-signing-demo/index.html

Example Solidity and Javascript for implementing EIP712 is available at the following URLs:

https://github.com/ethereum/EIPs/blob/master/assets/eip-712/Example.sol

https://github.com/ethereum/EIPs/blob/master/assets/eip-712/Example.js

Warn Users Not to Sign Messages Outside of Metacash - Since the current version of

Metacash is intended to be used by a custom mobile client and not a generic Web3 client, it

may be sufficient to instruct users through a clear warning that signing a message for another

DApp with their Metacash private key may put their funds at risk of theft. This may be a

sufficient path forward until EIP712 is finalized, though it will only be temporary if users are

later expected to interact with their wallet through other clients.

Metacash Response

Because EIP712 has not yet been finalized, we think it is not yet sufficiently stable to be used

in our Solidity codebase. Instead, we resorted to protect our users against potential phishing

attacks by replacing the standard Ethereum RPC signature prefix by the unique prefix

\x19Metacash Signed Message:\n32 .

Problem Report 2 - Fund Theft Through Transaction Collisions

Severity Target Line Number

High Message Signature 382

Description

Several functions in Metacash verify signed message hashes of unstructured data that is

encoded with abi.encode(...) . The following table describes what data is encoded in Metacash

for accepted messages. Each row includes the function name along with an ordered argument

to the encoded signature payload.

Note that all fields with the label data are byte arrays and are variable in length. All other

fields are fixed in size depending on their data type. Due to the way abi.encode(a,b,c,...)

encodes data, variable length arrays will be directly appended into the result. If the variable

length array is empty, no data will be written in that location.

Function 1 2 3 4 5 6 7 8 9

dW (deployWallet) factory relayer token gasprice fee

dW factory relayer token to gasprice fee value

dWExecCall factory relayer token contract data msgValue gasprice fee

dWExecDelegateCall factory relayer token contract data gasprice fee

dWExecCreate factory relayer token data gasprice fee

dWExecCreate2 factory relayer token data gasprice salt fee

execCall relayer contract token factory data msgValue fee gasprice nonce

execDelegatecall relayer contract token factory data fee gasprice nonce

pay relayer to token factory value fee gasprice nonce

Page 14

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

upgrade relayer impl token factory fee gasprice nonce

execCreate relayer token factory data fee gasprice nonce

execCreate2 relayer token factory data salt fee gasprice nonce

Function 1 2 3 4 5 6 7 8 9

Observe that these message payloads do not include the target function they are meant for.

This means that a malicious relayer can collect a valid signed message and construct a request

to the Metacash wallet that accomplishes a different task than what the owner intended. Some

consequences of this include the following:

execCall Message used in Pay - If a wallet owner signs a message to execCall that does not

include any data field, the empty byte array will take up 0 bytes when abi.encoded and the

message will be identical in size and structure to a pay message that is transferring tokens to

the target contract. A malicious relayer can create a DApp that accepts Ether with a fallback

function, for example a token sale contract, and rather than completing that transaction, they

can use that signed message to transfer DAI or whatever ERC20 token is used for fees to that

contract instead.

execDelegateCall used in Upgrade - If a user creates an execDelegateCall message with an

empty data field, the message can be used when calling upgrade which will most likely brick

the wallet and lock the users funds.

execDelegateCall used in Pay - If the data field of an execDelegateCall message is the size

of a uint256, then the message can be interpreted as a token transfer with data tokens being

transferred to the target contract.

execCall used in ExecDelegateCall - If the data field is empty in a execCall message, the

format will match an execDelegateCall message where the message value is interpreted as the

data.

Note: Due to the scope of testing, we did not verify that these malicious payloads could be

created from the Metacash DApp.

Remediation

Verify the Function in the Signed Message - Include the function identifier as part of the

signed message and verify it within the smart contract on execution.

Remove execDelegateCall - This function exposes Metacash to unnecessary risk without

providing substantial benefit to the end-user.

Metacash Response

We have added a string containing the function identifier to the beginning of each Metacash

signed message. We have also removed execDelegateCall from SmartWallet and Factory

contracts.

Problem Report 3 - Double Spend After Relayer Message Withholding

Severity Target Line Number

Medium SmartWallet 161

Description

Page 15

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Description

Metacash uses an incrementing nonce to ensure that signed messages cannot be replayed.

The contract only uses this nonce when executing signed messages. For manual transactions

sent by the owner, nonces are not used.

If all relayers go offline or decide to censor a user's message, the user may grow impatient and

perform a manual transaction instead. Once that transaction has been executed, the relayers

can then submit the previously signed message, since the nonce in the signed message is still

valid. If the relayer partners with the intended recipient of the fund, they can execute this

attack in order to collect double the payment from the owner.

Remediation

Increment the Nonce for All Transactions - This will prevent any previously valid

messages from being used after a manual transaction.

Note: As mentioned during discussions by Metacash, this can create the possibility of a

malicious user front-running a relayer to waste the relayer's gas, which can be a profitable

attack if the malicious user is a miner.

Include a Maximum Timeout for All Signed Messages - Verify this timeout in the contract

against a future block number rather than a timestamp to minimize miner variability.

Metacash Response

We have included an additional uint256 deadline to all Metacash signed messages that must

be lower or equal to the block number where the transaction is included. However, we chose

not to increment nonces for non-signed message transactions because it would open the door

to spam frontrunning attacks by users against relayers.

Problem Report 4 - Non-Compliant Tokens are Not Supported

Severity Target Line Number

Medium SmartWallet 163

Description

The ERC20 token standard describes a transfer function as returning a boolean True value if

the transfer is successful. Unfortunately, many popular tokens do not correctly implement this

standard and instead do not return any value. Two such tokens include OMG and BNB. More

information on the topic is available in the following post:

https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-

d67bf08521ca

The Metacash wallet assumes that all tokens that are transferred strictly follow this standard

and wraps all token transfers in a require(...) to validate the returned value is true. This

means that if a token is sent to this contract that does not correctly implement IERC20 and

does not return a boolean, all calls to transfer that token will fail.

Note that it is still possible to retrieve these tokens by constructing a call for execCall(...),

though this is non-intuitive for an average user.

Remediation

Page 16

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Provide Support for Non-Compliant Tokens - Provide a separate payNoncompliant(...)

function that does not expect a boolean return in the transfer so that typical wallet owners

have a way of moving non-compliant tokens out of their wallet.

Metacash Response

Instead of adding a special function for non-compliant tokens, we have removed the

requirement for external ERC20 token transfers to return true. This should be compatible with

tokens that do return true as well as those that do not.

Problem Report 5 - Failure to Validate Return Value of ecrecover

Severity Target Line Number

Low SmartWallet 385, 690

Description

If the parameters passed to an ecrecover(...) are incorrect, such as when a signature is

invalid, the result will be 0x00. The

recover(...) functions within Metacash do not check for this case and as such will return the

null value as if it is a valid address.

With this, the following scenario was suspected to be possible:

1. Assume the instance of the SmartWallet library contract is deployed at 0xAABBCCDD...

2. In this attack, a malicious relayer sends an execDelegateCall(...) transaction to that

contract address (0xAABBCC..., not an individual Proxy). The signature data will be

invalid, which will mean ecrecover returns 0. Because the value of store["owner"] will

also be 0 by default since the contract was never initialized, the signature check will

succeed.

3. The delegatecall can then be made to a contract with a self-destruct, destroying the

SmartWallet library contract and locking all instances of Proxy, similar to what occurred

with the second Parity multi-sig attack.

This attack was not exploitable in practice, due to that fact that abi.decoding an uninitialized

bytes array will revert rather than return zero:

require(abi.decode(store["owner"], (address)) ==
recover(keccak256(abi.encodePacked(msg.sender, contractAddress, tokenContract,

abi.decode(store["factory"], (address)), data, fee, tx.gasprice, currentNonce)), v, r,
s));

Despite no practical exploit existing, it is best practice to validate the return value from all low-

level functions such as ecrecover. The behavior of abi.decode reverting is currently not

documented in Solidity docs and could change in the future.

Remediation

Validate the Output of ecrecover - This can be done by storing the output as an address in

memory and requiring it not be equal to address(0).

Remove execDelegateCall - This function exposes Metacash to unnecessary risk without

Page 17

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

providing substantial benefit to the end-user.

Consider Moving the Upgrade Functionality to Proxy - This will increase the deployment

size of each wallet, but it will allow a way for owners to recover their wallets in the event that

the SmartWallet library contract is destroyed.

Metacash Response

Since we are fixing the contracts source to pragma solidity v0.5.8, if the behaviour of Solidity

changes in the future, it will not have any effect on our existing code. Therefore, we chose not

to validate the output of ecrecover.

Also as a response to Problem Report 2, we have decided to remove execDelegateCall from

our contracts.

We decided to keep the upgrade functionality at the SmartWallet contract in order not to

increase the gas cost of deploying user proxy contracts.

Problem Report 6 - Floating Pragma Version

Severity Target Line Number

Low Metacash.sol 1

Description

To lower the potential risk of undiscovered bugs, smart contracts should be deployed with the

compiler version that has already been thoroughly tested. By locking in the pragma, it helps to

ensure that contracts do not get deployed with a different version which could potentially

increase the chances for bugs or other unexpected consequences that the original authors

may not have originally considered.

The current version is specified at a minimum of v5.0.3 and is not locked in:

pragma solidity ^0.5.3;

Remediation

Lock Pragmas to Specific Compiler Version - Locking smart contracts to a specific version

helps guarantee deployment occurs consistently with the original authors intentions and limits

the risk of unknown bugs in latter versions.

myContract.sol

// less secure

pragma solidity ^0.5.3;

// more secure

pragma solidity 0.5.3;

Use Latest Compiler Build - It is recommended that Metacash V2 use the latest available

update of the solidity compiler, which is version 0.5.8. Older versions such as 0.5.5 and 0.5.6

have known vulnerabilities and must be avoided.

It is also important to note that upgrading SmartWallet via delegatecall to a contract compiled

Page 18

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

with a different Solidity version is dangerous and can cause unexpected changes to the

storage layout that may put user funds at risk. For wallets that have been deployed with a

previous version of solidity, it is recommended that Metacash advise its users to only upgrade

to a contract compiled with the same version of Solidity.

Metacash Response

We have fixed the Solidity version to pragma solidity v0.5.8.

Problem Report 7 - Functions Not Declared Payable

Severity Target Line Number

Low SmartWallet 414, 547

Description

The Proxy contract's fallback function is not declared payable . Since all calls to the

SmartWallet library are transacted through the Proxy's fallback, this means that Ether can not

be sent to any of the functions defined in SmartWallet. Since some of the functionality defined

in SmartWallet expects Ether to be received and stored in the wallet, such as depositEth(...)

and execCall(...) , this prevents some of the intended functionality of the wallet.

Additionally, deployWalletExecCall(...) in Factory expects to send a callvalue, but can only

send 0 Ether since it is not payable.

Remediation

Mark All Necessary Functions as Payable - This includes the fallback defined in Proxy and

deployWalletExecCall(...) in factory. Currently, functions that invoke a _execCreate(...) or

_execCreate2(...) will only accept contract creations that provide no value. If this changes in

the future, functions that invoke these calls may need to be marked payable as well.

Do Not Redundantly Accept msgValue as a Function Parameter - The function

deployWalletExecCall(...) accepts a parameter msgValue that can only be less than or equal

to the msg.value of the transaction. Since there is no use case for this parameter aside from

matching msg.value, it is recommended this parameter be removed and msg.value be used

instead.

Remove the Fallback in SmartWallet - The fallback defined in Line 86 will still require

Proxy's fallback to be payable in order to accept Ether. Further, if the fallback is called by a

smart contract in response to an execCall(...) function where the smart contract used

msg.sender.send(...) or msg.sender.transfer(...) , the entire transaction is likely to fail. This is

because the fallback will be limited to the 2300 gas stipend, which is not enough to both

abi.decode the owner and send the msg.value. Instead, it is recommended that this fallback be

removed entirely. The owner will still be capable of withdrawing Ether manually with the

withdrawEth() function.

Add Unit Tests - This issue is a functional bug that could have been caught through

comprehensive unit testing of the contracts' features.

Metacash Response

We have marked the said functions as payable. We have removed the redundant msgValue

Page 19

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

function parameter. We have removed the fallback function from SmartWallet contract.

Problem Report 8 - Re-entrancy Within execCall Function

Severity Target Line Number

Low SmartWallet 249

Description

The following execCall function allows a relayer to execute a call to any contract on behalf of

the owner. As we can see from the below parameters, there is a uint fee amount parameter

passed into this function and this fee is paid to the relayer for executing the call after the call

has been made. Depending on the contract that call is made to, this may pose a potential re-

entrancy risk that could allow a malicious relayer to collect multiple fees.

While unlikely, the following scenario could present a double fee collection based on re-

entrancy:

1. A malicious relayer exists as an attack contract X .

2. The relayer convinces a user to sign tx T that executes a call to honeypot Y .

3. The relayer then writes T to their contract X as stored data, X then submits T to

the Metacash wallet which execCalls Y .

4. On receipt of the call, Y calls X and X replays T once more.

5. Because the nonce will not have incremented yet, the same signed message will

succeed, meaning the relayer can collect fees for T more than once.

Note that this attack is dependent on a user agreeing to make an execCall to a malicious

contract, which is dangerous on its own.

Metacash.sol

246 function execCall(address contractAddress, bytes memory data, uint256 msgValue, uint

fee, address tokenContract, uint8 v, bytes32 r, bytes32 s) onlyRelay public returns (bool)

{

247 uint currentNonce = abi.decode(store["nonce"], (uint));

248 require(abi.decode(store["owner"], (address)) ==

recover(keccak256(abi.encodePacked(msg.sender, contractAddress, tokenContract,

abi.decode(store["factory"], (address)), data, msgValue, fee, tx.gasprice, currentNonce)),

v, r, s));

249 require(_execCall(contractAddress, data, msgValue));
250 IERC20 token = IERC20(tokenContract);

251 store["nonce"] = abi.encode(currentNonce+1);
252 require(token.transfer(msg.sender, fee));

253 return true;

254 }

Metacash.sol

184 function _execCall(address contractAddress, bytes memory data, uint256 msgValue)
internal returns (bool result) {

185 assembly {

186 result := call(gas, contractAddress, msgValue, add(data, 0x20), mload(data), 0,

0)

187 }

Page 20

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

188 }

Remediation

Transaction Ordering While the exploit imagined is somewhat impractical, it is best practice

that the external call be moved to the end of the function, after the nonce has been

incremented.

Add Additional Comments Provide additional inline comments about all potential functions

that pose a re-entrancy risk.

Metacash Response

We have moved the external call to the end of the execCall function body to avoid the potential

re-entrancy attack. Also, we have added a comment at the internal _execCall function to warm

readers of potential re-entrancy risk.

Problem Report 9 - User-Activated Self-Destruct Enables Replay Attacks

Severity Target Line Number

Low Upgrade Mechanism 372

Description

Currently, a signed message will always be valid until that nonce has been used. Transactions

sent to Factory do not use a nonce since they can only be applied once if the wallet has not yet

been deployed.

If a user is later able to destroy their wallet with a self-destruct operation, through

execDelegateCall(...) or by upgrading to a contract that supports self-destruct, a malicious

relayer will be able to replay all previous messages and potentially recreate the destroyed

wallet in order to steal token balances and collect fees.

Remediation

Remove execDelegateCall - This function exposes Metacash to unnecessary risk without

providing substantial benefit to the end-user.

Include a Maximum Timeout for All Signed Messages - Verify this timeout in the contract

against a future block number rather than a timestamp.

Do Not Introduce Self-Destruct in A Future Upgrade - This functionality will increase the

likelihood of previous transactions being replayed.

Metacash Response

We have removed execDelegateCall from our contracts.

We have added a block inclusion deadline for all Metacash signed messages.

Problem Report 10 - Potential to Upgrade Away Fees

Severity Target Line Number

Low Upgrade Mechanism 372

Page 21

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Severity Target Line Number

Description

Wallet owners have the ability to upgrade their Metacash wallet to any implementation they

choose. This means they can upgrade to a bootleg contract that removes fee payments for

relayers. If a relayer fails to sufficiently validate what version of the SmartWallet contract is

running, they can perform unintended actions and miss out on fee collection.

Remediation

Relayers Must Validate SmartWallet Code - It is not enough to verify the address of a

wallet came from Factory. Instead, before submitting any transactions, relayers must validate

that the SmartWallet implementation is one that was created by Metacash. One way to do this

would be by checking the hash of the library's code against a known list.

Metacash Response

In the existing and future relayer designs, we will protect the relayer against fee-avoidance

attacks by fetching for past Upgrade events emitted by the user’s smart wallet before

admitting each signed message. Relayers will not accept signed messages that are directed to

smart wallets that have been previously upgraded to an unknown implementation.

Page 22

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Observations

Over the course of testing, there were a total of 10 problems identified. In addition, there were

several other observations made about Metacash V2. While not severe enough to warrant

problem reports, Security Innovation recommends that Metacash investigate these in addition

to the security-related issues that were found.

Observation 1: Nonces Must be Serial

A Metacash wallet will only accept one valid transaction at a given moment, since the nonce

must be equal to the next nonce sequentially and nonces can not be reused. This prevents a

power user from creating many transactions at the same time, such as with a large air drop,

without limiting it to one single transaction that fits within the maximum block gas limit. While

this architecture is simpler and arguably more secure, it does limit the capabilities of the user.

If support for parallel transactions is later added, it is recommended that the client generate

random nonces for each transaction it creates and marks them as used in a mapping. This is

demonstrated in the following article:

https://programtheblockchain.com/posts/2018/02/17/signing-and-verifying-messages-in-

ethereum/

Observation 2: Redundant Return True

Several functions were found to return True even if there was no condition where False could

be returned. Rather, if a failure occurred the transaction would revert. Since there is no

condition where False can be returned, this return value is redundant. It is recommended that

all returns that do not offer useful information or are not part of a standard be removed so that

no value is returned.

Observation 3: Inconsistent Return Style

While reviewing the Metacash, it was noticed that there were multiple functions specifying the

return type parameter but provided no return statement. This does not pose a direct security

concern, however, it is inconsistent and can be easily confused or mistaken by developers

leveraging this smart contract code.

Below is an example :

Metacash.sol

184 function _execCall(address contractAddress, bytes memory data, uint256 msgValue)

internal returns (bool result) {
185 assembly {

186 result := call(gas, contractAddress, msgValue, add(data, 0x20), mload(data), 0,

0)

187 }

188 }

In this example, result is declared but there is no return statement inside the function. In

addition, to the above function, this was observed on L184 and L669. It is recommended that

for consistency all functions that return a value use the explicit return statement.

Observation 4: Event Reduction for Gas Optimization

Page 23

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

While reviewing the Metacash smart contracts, it was identified that the RelayRegistry makes

use of two separate events. The first event is for when a new relayer gets added to the registry

and the second is for when an existing relayer gets removed from the registry. The event that

is output is then determined based on a conditional if statement.

Metacash.sol

48 event AddedRelay(address relay);

49 event RemovedRelay(address relay);

By reducing the events to only one that could work for either an addition or a removal to the

registry, a small gas savings can be achieved.

Observation 5: Code Consistency and Quality

There are a few development inconsistencies that do not pose a direct security concern but

deviate slightly from other representations in the Metacash source code. These subtle

differences could open the door to developer confusion or potential difficulties maintaining the

code. The below table references these inconsistencies specifically:

Target

Line

Number Inconsistency Description

Metacash.sol 343 Parens Usage The onlyOwner modifier inconsistently uses

parentheses in the modifier

Metacash.sol 462,672 iszero Check One function uses the iszero assembly code whereas

another uses eq(...)

Metacash.sol 115 Exception

Behavior

The initate(...) function returns false on failure

whereas all other functions throw.

Observation 6: Use of Explicit Sized uint

The contracts use uint in place of the more explicit uint256 . As a best practice, it is

recommended that the size of data types be explicit, ensuring the future readability of the

contract.

Observation 7: Function Visibility

During the review of the Metacash smart contracts, it was noticed that the visibility on multiple

functions were set to public when they did not require that level of visibility. Although this does

not provide a direct security concern, restricting these functions could provide a more thorough

defense in depth approach that could potentially limit the attack surface for future bugs and

attacks. Below is a list of results returned from the Slither static text analyzer:

RelayRegistry.triggerRelay (Metacash.sol#61-69) should be declared external

SmartWallet.initiate (Metacash.sol#129-136) should be declared external

SmartWallet.pay (Metacash.sol#145-153) should be declared external

SmartWallet.pay (Metacash.sol#161-165) should be declared external

SmartWallet.pay (Metacash.sol#170-176) should be declared external

SmartWallet.execCall (Metacash.sol#233-236) should be declared external

SmartWallet.execCall (Metacash.sol#246-254) should be declared external

Page 24

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

SmartWallet.execDelegatecall (Metacash.sol#261-264) should be declared external

SmartWallet.execDelegatecall (Metacash.sol#273-281) should be declared external

SmartWallet.execCreate (Metacash.sol#287-290) should be declared external

SmartWallet.execCreate (Metacash.sol#298-306) should be declared external

SmartWallet.execCreate2 (Metacash.sol#313-316) should be declared external

SmartWallet.execCreate2 (Metacash.sol#325-333) should be declared external

SmartWallet.depositEth (Metacash.sol#338) should be declared external

SmartWallet.withdrawEth (Metacash.sol#343-346) should be declared external

SmartWallet.upgrade (Metacash.sol#354-366) should be declared external

SmartWallet.upgrade (Metacash.sol#372-376) should be declared external

Factory.deployWallet (Metacash.sol#472-479) should be declared external

Factory.deployWallet (Metacash.sol#488-495) should be declared external

Factory.deployWallet (Metacash.sol#500-506) should be declared external

Factory.deployWallet (Metacash.sol#514-521) should be declared external

Factory.deployWalletExecCall (Metacash.sol#530-537) should be declared external

Factory.deployWalletExecCall (Metacash.sol#547-554) should be declared external

Factory.deployWalletExecDelegatecall (Metacash.sol#561-568) should be declared

external

Factory.deployWalletExecDelegatecall (Metacash.sol#577-584) should be declared

external

Factory.deployWalletExecCreate (Metacash.sol#590-597) should be declared external

Factory.deployWalletExecCreate (Metacash.sol#605-612) should be declared external

Factory.deployWalletExecCreate2 (Metacash.sol#619-626) should be declared external

Factory.deployWalletExecCreate2 (Metacash.sol#635-642) should be declared external

Factory.getCreate2Address (Metacash.sol#661-663) should be declared external

Factory.canDeploy (Metacash.sol#679-681) should be declared external

Please note that this list might not include every occurrence of the aforementioned

observation. Upon remediation, it is advised that the development team review each

occurrence in depth.

Observation 8: Missing Return value

The _execCall() and _execDelegatecall() functions are not equipped to return the resulting

data from these calls to the user. Depending on the use case, it may be necessary for users to

receive this data in order to perform their desired action.

Observation 9: Missing Revert Messages

As of Solidity v0.4.24, all reverts can include a reason string. It is recommended that these

strings be included in all require(...) statements to add clarity when encountering an error.

Observation 10: Unclear Function Naming

There are four functions with the name deployWallet. Two of these functions offer the manual

and relayed version of deploying a new wallet, whereas the other two offer the manual and

Page 25

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

relayed version of deploying a wallet and making a payment. This naming collision can be

confusing to readers of the source and ABI. It is recommended that the functions that create

and pay be renamed to deployWalletAndPay.

Observation 11: Incorrect Commenting

Line 204 and Line 216 have errors in the comments that prevent Solidity from compiling:

Error: Documented parameter "bytecode" not found in the parameter list of the function.

Error: Documented parameter "bytecode" not found in the parameter list of the function.

To fix this, insert the string data between @param and bytecode.

Metacash.sol

202 /*

203 * @dev Internal function that creates any contract

204 * @param data bytecode of the new contract
205 */

206 function _execCreate(bytes memory data) internal returns (bool result) {

Metacash.sol

214 /*

215 * @dev Internal function that creates any contract using create2

216 * @param data bytecode of the new contract
217 * @param salt Create2 salt parameter

218 */

219 function _execCreate2(bytes memory data, uint256 salt) internal returns (bool result)

{

Observation 12: Batch Pay Assertions

The batch pay function makes the assumption that the lengths all the parameter arrays are

equal. If a read is made outside of the array bounds, the transaction will revert. Despite this, it

is best practice that these inputs be checked beforehand and explicitly throw when they are

not equal in length.

Metacash.sol

167 /*

168 * @dev Same as above but allows batched transfers in multiple tokens

169 */

170 function pay(address[] memory to, uint[] memory value, address[] memory tokenContract)
onlyOwner public returns (bool) {

171 for (uint i; i < to.length; i++) {

172 IERC20 token = IERC20(tokenContract[i]);

173 require(token.transfer(to[i], value[i]));

174 }

175 return true;

176 }

Observation 13: Inconsistent Order of Initiate and Pay

Page 26

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

The Factory contract typically will run the initiate wallet function last. This is to allow a case

where a previous action (such as call or create) funds the wallet for the fees required in initiate.

In one function on L493 the pay occurs after initiate. It is not clear why this is the case and is

recommended for consistency sake that this function follow the style of the others and run

initiate last.

Additionally, a comment on L525 describes the collect-call use case described above to justify

putting initiate last, but this comment precedes a manual function where no fee is collected. It

is recommended this justification move to a relayer function instead.

Observation 14: Relayed Pay Message Must Transfer A Supported Token

The pay(...) functionality requires that the ERC20 token being transferred is the same token

that is collected by the relayer in fee. This means that if a user wants to transfer a token that is

less common or uninteresting to the relayer, they will need to do a manual transaction. It is

recommended that the functionality be expanded such that the token for fee payment can be a

different token than the one being transferred in a pay message.

Observation 15: NFTs Unsupported

The Metacash wallet does not currently support NFTs. This means that a user who sends an

NFT to their Metacash wallet will be unable to move it and it will be locked unless they can

correctly use the execCall function. It is recommended that Metacash add an nftWithdrawl(...)

function so that users can manually transfer out their ERC721 tokens.

Page 27

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Executed Test Cases

The following table shows the breakdown of executed test cases, including any problem reports

relevant to that item, and gives a brief summary of the methodology used to check that item

and any other observations.

Column descriptions are as follows:

ID - An identifier for quick test case reference

Title - A title describing the test case

Description - A short description of the test case and why it was performed

Outcome - Either 'Pass' or a reference to the Problem Report Number

ID Title Description Outcome

1 Assert Violation (SWC-110) As a best practice, assertion

failures should never occur on live code.

PASS

2 Audited Dependencies Verify that all dependencies have been

audited, such as OpenZeppelin's contracts.

PASS

3 BlockHash for

Current/Future Block

Check that the blockhash(block.now) or

greater is not used since it returns 0.

PASS

4 BlockHash for Old

Block

Check that the blockhash of a block 256+

blocks ago is not used since it returns 0.

PASS

5 Comments Confirm dangerous areas of code are

commented as such.

PR8

6 Compiler (SWC-102) Check that the contract was

compiled with the most recent solidity

compiler.

PR6

7 Constructor

Declaration

(SWC-118) Check that contracts written in

Solidity v0.4.22 or greater use the constructor

declaration, and that older ones do not contain

a typo in the function name.

PASS

8 Contract Detection

Bypass

Confirm that when checking if a source is a

contract, the following is used:

require(msg.sender==tx.origin).

PASS

9 Delegatecall Storage

Slot Matching

(SWC-124) Check that implementations that

utilize delegatecall correctly maintain storage

slot ordering.

PASS

10 Denial of Service 1 -

Loops

(SWC-128) Check that loops are used only as

needed to avoid reaching gas limits and are

not on arbitrarily sized maps/arrays.

PASS

11 Denial of Service 2 -

Owner

Check that an operation from an owner is not

necessary for users to withdraw and leave.

PASS

12 Denial of Service 3 -

External Contracts

(SWC-113) Check that an operation does not

depend on successfully calling another

contract.

PR4

Page 28

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

13 External Call Within a

Contract

Confirm that any external calls within the same

contract (i.e. using this.a(...) rather than just

a(...)) do not incorrectly use msg.sender, which

would be the contract's address and not the

original msg.sender.

PASS

14 Floating Point Confirm that floating points are never used

unless there is a good reason.

PASS

15 For-Loop Endless Loops (SWC-101) Check that the conditional in a For-

Loop will eventually terminate (i.e. uint8 <

256).

PASS

16 Function Visibility (SWC-100) Check that all functions are

appropriately labeled as Public, Private,

External, or Internal.

Observation

7

17 Inheritance Name

Collision

(SWC-119) Confirm that a contract does not

unintentionally overwrite a variable from an

inherited contract.

PASS

18 Inheritance Ordering (SWC-125) Confirm that the order in which

multiple contracts are inherited is correct

(Diamond Problem resolution).

PASS

19 Inherited Function

Signature Mismatch

Confirm that functions that are intended to

overwrite inherited functions match signatures

correctly.

PASS

20 Insufficient Signature

Validation

(SWC-122) If an off-chain signature scheme is

used, ensure that msg.sender is not assumed

to be the source (for cases where the source

might be a contract instead).

PASS

21 Integer Overflow and

Underflow

(SWC-101) Check that the safe math library is

used and that arithmetic operations are done

with .sub, .add, .mul, and .div.

PASS

22 Malicious Owner Check that a malicious owner can not perform

harm to their contract's users, such as stealing

balances or changing an external contract.

PASS

23 Matching Versions (SWC-103) Check that the pragma for all

contracts is consistent and is locked to tested

versions.

PR6

24 Miner Front-Running (SWC-114) Check that miners do not have an

economically worthwhile advantage to copy

and mine their own transactions.

PR4

25 Missing Modifiers Confirm that modifiers are still in place after

inheritance.

PASS

26 Missing Revert

Messages

Confirm that all reverts, requires, asserts, etc

include string explanations, as enabled in

solidity 0.4.22.

Observation

9

27 Optimizations Check that the contract is sufficiently

optimized to not waste gas.

Observation

4

ID Title Description Outcome

Page 29

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

28 Randomness (SWC-120) Check that a source of randomness

is not predictable.

PASS

29 Re-entrency (SWC-107) Check that .call() is avoided when

possible, and that value sends happen at the

end of the function.

PR8

30 Revert Early and Often (SWC-123) Check that a contract reverts as

soon as it detects a violation.

PASS

31 Safemath Calculation

Stored

Ensure that safemath operations store the

result in a variable.

PASS

32 Sensitive Data in

Private Variables

Check that all data in private variables are not

sensitive, since their value can be determined

in a chain explorer.

PASS

33 Signature Malleability (SWC-117) Confirm that any signatures that

are manually checked do not incorrectly

depend on a constant hash.

PASS

34 Signature Replay

Attacks

(SWC-121) Confirm that any signed messages

that are interpreted by the contract can not be

replayed with the same hash and signature.

PR1, PR2

35 Signed vs Unsigned

Casting

(SWC-101) Check that there is not implicit

casting of signed to unsigned.

PASS

36 Storage Overwrite via

Uninitialized Pointer

(SWC-109) Check that all storage pointers are

initialized (pre Solidity 0.5).

PASS

37 Storage Overwrite via

array.length

(SWC-124) Check that an array length is never

manually set.

PASS

38 Timestamp Operations (SWC-116) Check that block.timestamp is not

checked for precision in any trusted

operations.

PASS

39 Timing Attacks in

ERC20 - Approve

(SWC-114) Confirm that a contract does not

unsafely set the approve value of an ERC20

token such that it can be double spent.

PASS

40 Token Decimals Confirm that the correct decimal is taken into

account when performing arithmetic on

tokens.

PASS

41 Tx.origin

Authentication

(SWC-115) Check that tx.origin is not used for

authorization in a contract.

PASS

42 Unary Operators (SWC-129) Confirm that when an int is

negated with a minus sign, the case of

0x8000.. is considered.

PASS

43 Unchecked Return

Values

(SWC-104) Check that the return values of

.call(...), .callcode(...), .send(...), and

.delegetecall(...) are always validated.

PR5

44 Unexpected Balance Check that a contract with a balance that skips

the fallback (selfdestruct or precomputed

address) does not affect the business logic.

PASS

ID Title Description Outcome

Page 30

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

45 Unexpected

Consequence of

Uninitialized Memory

Confirm that an uninitialized variable

defaulting to 0 does not mean anything (such

as a 0 index in an array).

PASS

46 Unit Tests Check that a sufficient number of unit tests

have been created.

PR7

47 Unprotected Self

Destruct

(SWC-106) Confirm that selfdestruct cannot be

called by an unauthorized user.

PR9

48 Unsafe Assembly (SWC-127) Verify that all uses of direct

assembly are safe.

PASS

49 Unsafe Delegatecall (SWC-112) Check that delegatecall is only

used against trusted contracts.

PR10

50 Upgradability Confirm that if upgrading the contract is

desired, then data is stored in a separate

contract from instructions.

PASS

51 Use of Deprecated

Functions

(SWC-111) Confirm that no deprecated

functions are in use, including: suicide(...),

block.blockhash(...), sha3(...), callcode(...),

throw, msg.gas, and constant.

PASS

52 User Initiated

Withdrawal

(SWC-113) Confirm that withdrawals are user

initiated as a best practice.

PR7

53 Variable Visibility (SWC-108) Check that all contract variables

are appropriately labeled as Public, Private,

External, or Internal.

PASS

54 View Functions used

Internally

Check that inefficient view functions are not

called by internal functions.

PASS

55 Noncompliant Tokens Verify that tokens that do not follow ERC

standards can still be recovered.

PR3

56 Unspecified Integer

Size

Verify that all integer values specify an exact

integer size to limit ambiguity.

Observation

6

57 Redundant Return

Value

Verify that return values avoid redundancy. Observation

2

ID Title Description Outcome

Page 31

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Tools

While testing Metacash V2, the following tools were employed:

Tool Description Link

Remix Solidity IDE https://remix.ethereum.org

Mythril Classic Security analysis tool for Ethereum

smart contracts

https://github.com/ConsenSys/mythril-

classic

Slither Static Analyzer for Solidity https://github.com/crytic/slither

Page 32

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

Next Steps

This section contains our recommendations for areas that may benefit from additional testing.

For each section, we describe why it is important to test these sections, either more thoroughly

or for the first time.

Retest After Remediation - A retest of the Metacash V2 smart contracts is recommended to

be performed when the problems found as a result of this test have been remediated. This

validates the remediation put in place and ensures that other vulnerabilities have not been

introduced in the course of remediation. Additionally, as new features are added to the smart

contract, additional auditing is recommended to ensure the new functionality does not expose

users to additional risk.

Other Integration Points - Numerous other applications are used by the user to interact with

the contract. Each one of these interfacing applications should undergo a security review to

make sure they are not putting user funds at risk. Every integration point is another

opportunity for an attacker to get in or take control of a system, so each should receive the

same level of scrutiny. Specifically the recently released Android application and the soon to be

released iOS application should be reviewed, along with any server code or APIs used by

relayers.

The author(s) of this report retain no responsibility for any unidentified vulnerabilities, known

or unknown, in the target application. Inconsistencies, errors, and reproducibility problems

associated with this report should be directed through the contact person to the testers

indicated at the beginning of this report.

Page 33

187 Ballardvale St., Suite A195 • Wilmington, MA 01887

Ph: (978) 694-1008 • F: (978) 694-1666

www.securityinnovation.com

	Introduction
	Contract Description
	Factory
	Proxy
	SmartWallet
	RelayRegistry
	Ownable

	Attack Surface Analysis
	Problem Report Summary
	Problem Reports
	Problem Report 1 - Fund Theft Through Signature Phishing
	Description
	Remediation
	Metacash Response

	Problem Report 2 - Fund Theft Through Transaction Collisions
	Description
	Remediation
	Metacash Response

	Problem Report 3 - Double Spend After Relayer Message Withholding
	Description
	Remediation
	Metacash Response

	Problem Report 4 - Non-Compliant Tokens are Not Supported
	Description
	Remediation
	Metacash Response

	Problem Report 5 - Failure to Validate Return Value of ecrecover
	Description
	Remediation
	Metacash Response

	Problem Report 6 - Floating Pragma Version
	Description
	Remediation
	Metacash Response

	Problem Report 7 - Functions Not Declared Payable
	Description
	Remediation
	Metacash Response

	Problem Report 8 - Re-entrancy Within execCall Function
	Description
	Remediation
	Metacash Response

	Problem Report 9 - User-Activated Self-Destruct Enables Replay Attacks
	Description
	Remediation
	Metacash Response

	Problem Report 10 - Potential to Upgrade Away Fees
	Description
	Remediation
	Metacash Response

	Observations
	Observation 1: Nonces Must be Serial
	Observation 2: Redundant Return True
	Observation 3: Inconsistent Return Style
	Observation 4: Event Reduction for Gas Optimization
	Observation 5: Code Consistency and Quality
	Observation 6: Use of Explicit Sized uint
	Observation 7: Function Visibility
	Observation 8: Missing Return value
	Observation 9: Missing Revert Messages
	Observation 10: Unclear Function Naming
	Observation 11: Incorrect Commenting
	Observation 12: Batch Pay Assertions
	Observation 13: Inconsistent Order of Initiate and Pay
	Observation 14: Relayed Pay Message Must Transfer A Supported Token
	Observation 15: NFTs Unsupported

	Executed Test Cases
	Tools
	Next Steps

